anofox-regression
Need to run this on 10GB of data? Use our DuckDB extension
Need to use this in a React Dashboard? Use our npm package
A robust statistics library for regression analysis in Rust, validated against R (VALIDATION).
This library provides sklearn-style regression estimators with full statistical inference support including standard errors, t-statistics, p-values, confidence intervals, and prediction intervals.
Features
-
Linear Regression
- Ordinary Least Squares (OLS) with full inference
- Weighted Least Squares (WLS)
- Ridge Regression (L2 regularization)
- Elastic Net (L1 + L2 regularization via L-BFGS)
- Recursive Least Squares (RLS) with online learning
- Bounded Least Squares (BLS/NNLS) with box constraints
- Dynamic Linear Model (LmDynamic) with time-varying coefficients
-
Generalized Linear Models
- Poisson GLM (Log, Identity, Sqrt links) with offset support
- Negative Binomial GLM (overdispersed count data with theta estimation)
- Binomial GLM (Logistic, Probit, Complementary log-log)
- Tweedie GLM (Gaussian, Poisson, Gamma, Inverse-Gaussian, Compound Poisson-Gamma)
-
Augmented Linear Model (ALM)
- 24 distributions: Normal, Laplace, Student-t, Gamma, Beta, Log-Normal, and more
- Based on the greybox R package
-
Quantile & Monotonic Regression
- Quantile Regression (IRLS with asymmetric weights, any τ ∈ (0,1))
- Isotonic Regression (PAVA algorithm for monotonic constraints)
-
Smoothing & Classification
- LOWESS (Locally Weighted Scatterplot Smoothing)
- AID (Automatic Identification of Demand) classifier
-
Loss Functions
- MAE, MSE, RMSE, MAPE, sMAPE, MASE, pinball loss
-
Model Diagnostics
- R², Adjusted R², RMSE, F-statistic, AIC, AICc, BIC
- Leverage, Cook's distance, VIF, studentized residuals
Installation
Add to your Cargo.toml:
[dependencies]
anofox-regression = "0.5"
Examples
The library includes runnable examples demonstrating each major feature:
cargo run --example ols # Ordinary Least Squares
cargo run --example wls # Weighted Least Squares
cargo run --example ridge # Ridge regression
cargo run --example elastic_net # Elastic Net
cargo run --example rls # Recursive Least Squares
cargo run --example bls # Bounded/Non-negative LS
cargo run --example poisson # Poisson GLM
cargo run --example negative_binomial # Negative Binomial GLM
cargo run --example binomial # Logistic regression
cargo run --example tweedie # Tweedie GLM
cargo run --example alm # Augmented Linear Model
cargo run --example lm_dynamic # Dynamic Linear Model
cargo run --example lowess # LOWESS smoothing
cargo run --example aid # Demand classification
cargo run --example quantile # Quantile regression
cargo run --example isotonic # Isotonic regression
Quick Start
OLS Regression
use anofox_regression::prelude::*;
use faer::{Mat, Col};
let x = Mat::from_fn(100, 2, |i, j| (i + j) as f64 * 0.1);
let y = Col::from_fn(100, |i| 1.0 + 2.0 * i as f64 * 0.1);
let fitted = OlsRegressor::builder()
.with_intercept(true)
.build()
.fit(&x, &y)?;
println!("R² = {:.4}", fitted.r_squared());
println!("Coefficients: {:?}", fitted.coefficients());
Prediction Intervals
let result = fitted.predict_with_interval(
&x_new,
Some(IntervalType::Prediction),
0.95,
);
println!("Fit: {:?}", result.fit);
println!("Lower: {:?}", result.lower);
println!("Upper: {:?}", result.upper);
Poisson GLM
let fitted = PoissonRegressor::log()
.with_intercept(true)
.build()
.fit(&x, &y)?;
println!("Deviance: {}", fitted.deviance);
let counts = fitted.predict_count(&x_new);
Logistic Regression
let fitted = BinomialRegressor::logistic()
.with_intercept(true)
.build()
.fit(&x, &y)?;
let probs = fitted.predict_probability(&x_new);
Augmented Linear Model
// Laplace regression (robust to outliers)
let fitted = AlmRegressor::builder()
.distribution(AlmDistribution::Laplace)
.with_intercept(true)
.build()
.fit(&x, &y)?;
println!("Log-likelihood: {}", fitted.log_likelihood);
Quantile Regression
// Median regression (tau = 0.5)
let fitted = QuantileRegressor::builder()
.tau(0.5)
.build()
.fit(&x, &y)?;
println!("Median coefficients: {:?}", fitted.coefficients());
// 90th percentile regression
let fitted_90 = QuantileRegressor::builder()
.tau(0.9)
.build()
.fit(&x, &y)?;
Isotonic Regression
// Fit monotonically increasing function
let fitted = IsotonicRegressor::builder()
.increasing(true)
.build()
.fit_1d(&x, &y)?;
println!("R² = {:.4}", fitted.result().r_squared);
let predictions = fitted.predict_1d(&x_new);
Validation
This library is developed using Test-Driven Development (TDD) with R as the oracle (ground truth). All implementations are validated against R's statistical functions:
| Rust | R Equivalent | Package |
|---|---|---|
OlsRegressor |
lm() |
stats |
WlsRegressor |
lm() with weights |
stats |
RidgeRegressor, ElasticNetRegressor |
glmnet() |
glmnet |
BlsRegressor |
nnls() |
nnls |
PoissonRegressor |
glm(..., family=poisson) |
stats |
BinomialRegressor |
glm(..., family=binomial) |
stats |
NegativeBinomialRegressor |
glm.nb() |
MASS |
TweedieRegressor |
tweedie() |
statmod |
AlmRegressor |
alm() |
greybox |
QuantileRegressor |
rq() |
quantreg |
IsotonicRegressor |
isoreg() |
stats |
| Diagnostics | cooks.distance(), hatvalues(), vif() |
stats, car |
All 485+ test cases ensure numerical agreement with R within appropriate tolerances.
For complete transparency on the validation process, see validation/VALIDATION.md, which documents tolerance rationale for each method and reproduction instructions.
Dependencies
- faer - High-performance linear algebra
- statrs - Statistical distributions
- argmin - Numerical optimization (L-BFGS)
Attribution
This library includes Rust implementations of algorithms from several open-source projects. See THIRD_PARTY_NOTICES for complete attribution and license information.
Key attributions:
- greybox - ALM distributions and AID classifier methodology (independent implementation)
- argmin (MIT/Apache-2.0) - L-BFGS optimization
- faer (MIT) - Linear algebra operations
- statrs (MIT) - Statistical distributions
License
MIT License